

4th Year B. Tech. Chemical Engineering

P P Savani University

School of Engineering Department of Chemical Engineering

Effective From: 2020-21 Authored by: P P Savani University

	P P SAVANI UNIVERSITY														
				SCHO	OL OF ENG	INEERING									
	TEACI	HING & EXAMINATION	SCHEME	FOR FOL	JRTH YEAH	R B.TECH.	CHEMI	CAL EN	GINE	ERIN	G PRO	DGRA	MME	2	
					Teach	ing Schem	e			E	xami	nation	Sch	eme	
Sem	Course Code	Course Title	Offered By		Contact	Hours		Credit	Th	eory	Prac	tical	Tutorial		Total
			y	Theory	Practical	Tutorial	Total	creuit	CE	ESE	CE	ESE	CE	ESE	IUtai
7	SECH4011	Process Equipment & Design-II	СН	04	04	00	08	06	40	60	20	30	00	00	150
	SECH4021	Chemical Reaction Kinetics - II	СН	04	02	00	06	05	40	60	20	30	00	00	150
	SECH4030	Petroleum Studies	СН	03	02	00	05	04	40	60	20	30	00	00	150
	SECH4041	Chemical Engineering Plant design, Economics & Industrial Management	СН	02	00	00	02	02	40	60	00	00	00	00	100
	SECH4050	Modelling, Simulation & CAD in Chemical Engineering	СН	03	02	00	05	04	40	60	20	30	00	00	150
	SEPD4010	Creativity, Problem Solving & Innovation	SEPD	03	00	00	03	03	40	60	00	00	00	00	100
	SEME4910	Industrial Training	СН		04		00	04	0	0	100	100	00	00	200
		Elective-III	СН	03	00	00	03	03	40	60	00	00	00	00	100
	SECH4062	Transport Phenomena	СН	04	00	01	05	05	40	60	00	00	50	00	150
8	SECH4070	Process Integration & Process Optimization	СН	04	02	00	06	05	40	60	20	30	00	00	150
	SECH4920	Project based learning	СН		08		08	08	00	00	100	150	00	00	250

P P SAVANI UNIVERSITY SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR FOURTH YEAR B.TECH. CHEMICAL ENGINEERING PROGRAMME (ELECTIVE COURSES)

	Course	Department	Offerred	Teaching Scheme					Examination Scheme						
Sem	Code	Elective Course	Difered		Contact Hours				The	Theory		Practical		orial	Total
	Coue	Title	Бу	Theory	Practical	Tutorial	Total	creuit	CE	ESE	CE	ESE	CE	ESE	Total
7	SECH4510	Chemical System Modelling	СН	03	00	00	03	03	40	60	00	00	00	00	100
	SECH4520	Quality Control & Quality Assurance – Instrumentation & Validation Process	СН	03	00	00	03	03	40	60	00	00	00	00	100
	SECH4530	Membrane Technology	СН	03	00	00	03	03	40	60	00	00	00	00	100
	SECH4540	Industrial Health & Safety Engineering	СН	03	00	00	03	03	40	60	00	00	00	00	100

CONTENT

Semester 7

Sr. No.	Course Code	Course Name	Page No.
1.	SECH4011	Process Equipment & Design-II	1-3
2.	SECH4021	Chemical Reaction Kinetics - II	4-6
3.	SECH4030	Petroleum Studies	7-9
4.	SECH4041	Chemical Engineering Plant design, Economics &	10-12
		Industrial Management	10 12
5	SECH4050	Modelling, Simulation & CAD in Chemical	12-15
5.		Engineering	15-15
6.	SECH4062	Transport Phenomena	16-18
7.	SECH4070	Process Integration & Process Optimization	19-21
8.	SEPD4010	Creativity, Problem Solving & Innovation	22-24
9.	SECH4920	Project based Learning	

Electives

Sr. No.	Course Code	Course Name	Page No.
1.	SECH4510	Chemical System Modelling	25-26
2.	SECH4520	Quality Control & Quality Assurance – Instrumentation & Validation Process	27-29
3.	SECH4530	Membrane Technology	30-32
4.	SECH4540	Industrial Health & Safety Engineering	33-35

Department of Chemical Engineering

Course Code: SECH4011 Course Name: Process Equipment & Design-II Prerequisite Course(s): SECH3062 - Process Equipment & Design-I

Teaching & Examination Scheme:

_										
Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Tutorial Credit	Theory		Practical		Tutorial		Total
	FIACULAI	Tutoriai		CE	ESE	CE	ESE	CE	ESE	TOLAI
04	04	00	06	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand modifications and additions to existing plants or creating design layouts of plant / Equipment.
- rapidly increase rate in the advancement of knowledge and relevant application for equipment design.
- observe conclusively the practices in using the reference literature and software.

	Section I		
Module	Contont	Hours	Weightage
No.	content	nouis	in %
	Introduction to Chemical Engineering Design		
1	Process Design, Mechanical aspects of process equipment	02	05
1.	design, General design procedure, Equipment classifications,	02	03
	Design codes and standards (IS, ASTM and BS).		
	Process Design of Piping, Fluid Moving Devices and Flow		
	meters		
	Introduction, Process Design of Piping, Npsha & Npshr, Power		
2.	Required by Pump, Evaluation of Centrifugal Pump Performance	13	20
	When Handling Viscous Liquids, Power Required in Fan, Blower		
	and Adiabatic Compressor, Flow Meters, Process Design of		
	Orifice Meter, Rotameter Etc.		
	Process Design of Extractor		
	Industrial Applications of Liquid-Liquid Extraction, Choice of		
2	Solvent, Process Design of Counter Current Multistage Extractor,	15	25
5.	Selection Criteria among Different Types of Extractor, Process	15	25
	Design of Mixer-Settler Type Extractor & Packed Tower Type		
	Extractor, Guidelines for the Design of Other Types of Extractors		

Section II									
Module	Content	Hours	Weightage						
No.	Content	nours	in %						
	Mechanical design of Reaction Vessel								
	Mechanical Design of Shell, Head, Jacket, Coil, Agitator, Nozzle,								
	Body Flange, Etc., Different Types of Agitators & their Selection		20						
1.	Criteria, Different Types of Agitator Shaft Sealing System & their	12							
	Selection Criteria, Different Types of Power Transmission								
	System, Determination of Power Required for Agitation, Shaft								
	Diameter, Blade Thickness, Etc.								
	Mechanical design of Storage Tan								
	Classification of Storage Tank as Per Is-803, Capacity of Storage								
2	Tank, Its Diameter & Height, Design of Shell and Bottom Plate for	10	10						
Ζ.	Storage Tank, Design of Self Supported Conical Roof, Design of	10	10						
	Structured Supported Conical Roof as Per Api 620, Selection of								
	Column, Girders and Rafters, Roof Curb Angel, Floating Roof								
	Supports								
3.	Different Types of Supports, Mechanical Design of Bracket	08	12						
	Support, Skirt, Support & Saddle Support, Numerical								

List of Practical:

Sr. No	Name of Practical	Hours
1.	Flow sheeting of piping	04
2.	Flow sheeting of pumps	04
3.	Flow sheeting of compressor	04
4.	Flow sheeting of flow meters	04
5.	Flow sheeting of extractor	08
6.	Flow sheeting of agitated vessel	04
7.	Flow sheeting of different types of agitator	08
8.	Flow sheeting of different types of extractors	08
9.	Flow sheeting of storage tank	04
10.	Flow sheeting of bracket support	04
11.	Flow sheeting of skirt support	04
12.	Flow sheeting of saddle support	04

Text Book(s):

Title	Author/s	Publication
Chemical Engineering -	Sinnott. R.K, Coulson &	Butterworth Heinemann,
Volume 6 (3 rd Edition)	Richardson's	New Delhi, 1999
Chemical Engineers Handbook - Perry's (7 th Edition)	Perry. R.H., et al.	McGraw Hill, NewYork, 1997
Process Equipment Design	Bownell, L.E., and Young, E.M	Wiley Eastern, 1968
Introduction to Process Engineering and Design (1st Edition)	S B Thakore and B I Bhatt	Tata McGraw Hill, 2007

Process Equipment Design	Joshi. M.V. and	Macmillan India Limited, New
Process Equipment Design	Mahajani. V.V	Delhi, 1996

Reference Book(s):

Title	Author/s	Publication
Chemical Process Equipment: Design and	Maidargi Suroch C	Maidargi Surach C
Drawing	Maluargi, Suresii C.	Maluargi, Suresir C.
Introduction to Chemical Equipment Design:	Phattachammy P.C	CDS Dublishor 2012
Mechanical Aspects	Dilattaciial'yy, D C.	CDS FUDIISITEF, 2012

Web Material Link(s):

• https://nptel.ac.in/courses/103103027/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- design process equipment and modify the design of existing equipment to new process conditions or new required capacity.
- build a bridge between theoretical and practical concepts used for designing the equipment in any process industry.
- create understanding of equipment design.
- review the importance of design concepts in process industry.

Department of Chemical Engineering

Course Code: SECH4021 Course Name: Chemical Reaction kinetics - II Prerequisite Course(s): SECH3052 - Chemical Reaction Kinetics – I

Teaching & Examination Scheme:

0										
Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
Theory		Tutoriai		CE	ESE	CE	ESE	CE	ESE	TOLAI
04	02	00	05	40	60	20	30	00	00	150
04	02	00	05	40	00	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- comprehend residence time distributions, and how they can be used to characterize and design non-ideal reactors.
- understand the preparation of catalysis, solid-catalyzed reactions and heterogeneous reaction and its application in various chemical industries.
- kinetics and design of reactors for non-catalytic fluid-fluid and fluid-particle reactions.
- to know the basic operational principle of advance reactors and it's used in allied chemical industries.

Section I							
Module	Content	Hours	Weightage				
No.		nourb	in %				
1.	Non-Ideal Flow Basics of non-ideal flow, Residence time distribution, stimulus response techniques, The E, F and C Curves, their interrelationship, conversion in non-ideal flow reactors, Dispersion model, Chemical Reaction and dispersion, Intensity of fluid mixing. Tanks in series model, Deviation from plug flow. Models for real stirred tanks	09	15				
	Hotorogonoous Deactions: Introduction						
2.	Rate steps involved in heterogeneous systems, Overall rate expression for linear and non-linear process, contacting patterns for two-phase systems.	07	10				
	Fluid-Fluid Systems						
3.	Rate equation, rate equation for straight mass transfer, kinetic regimes of mass transfer and chemical reaction, rate equation for mass transfer and chemical reactions, film conversion parameter, fluid-fluid reactor design.	08	15				

	Fluid-Particle Systems		
4.	Fluid partial reaction kinetics, selection of a model, Shrinking Core Model for unchanging and changing size spherical partials, Diffusion through gas film and through ash layer controlling, Chemical reaction controlling, shrinking core model, its limitations, Determination of rate controlling step.	06	10
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Catalysis Catalysts, Physical properties of catalyst, surface area, void volume, solid density, pore volume distribution, Classification and preparation of catalyst, catalyst promoters. Catalyst inhibitors, Catalyst poisons, Nature and Mechanism of Catalytic reactions.	12	20
2.	Solid-Catalysed Reactions: Kinetics Adsorption isotherms and rates of adsorption and desorption. Kinetic regimes, rate equations for surface kinetics, Pore diffusion, determining rate controlling step, experimental methods for finding rates, product distribution in multiple reactions.	08	15
3.	Introduction to Catalytic Reactor Packed bed catalytic reactors, fluidized bed reactors, trickle beds, slurry reactors. Kinetics of Bio-Reaction, Monod Equation, Design of Bioreactors, Reactions in Solids – Reactors for Solid Reactions, CVD Reactors, Monolithic Reactors, Gauze Reactors	10	15

List of Practical

Sr. No	Name of Practical	Hours
1.	RTD study in Tubular reactor	02
2.	RTD study in CSTR reactor	04
3.	RTD study in Packed bed reactor	04
4.	RTD study in PFTR	04
5.	Kinetics study in Batch enzyme reactor	04
6.	Heterogeneous reaction kinetics study in catalytic reactor	04
7.	Heterogeneous reaction kinetics study in catalytic fluidized bed reactor	04
8.	Kinetics study in Annular UV photo reactor.	04

Text Book(s):

Title	Author/s	Publication
Chemical Engineering Kinetics - 3rd Edition	J. M. Smith	McGraw-Hill (1990)
Chemical Reaction Engineering - 3rd Edition	O. Levenspiel	John Wiley (1998)

Reference Book(s):

Title	Author/s	Publication
Chemical and Catalytic Reaction Engineering	J. J. Carberry	McGraw Hill, New York, 1976.
Elements of Chemical Reaction	H. Scott Fogler	3rd Edition, John Wiley &
Engineering		Sons (Asia) pvt. Ltd.

Web Material Link(s):

- https://nptel.ac.in/courses/103/108/103108097/
- https://nptel.ac.in/courses/103/101/103101141/
- https://nptel.ac.in/courses/103/102/103102012/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- analyze the RTD studies for any flow reactor, to predict the deviation from ideal reactors by evaluating the dispersion number.
- analyze the various contacting pattern for two phase system and predict the rate equation for heterogeneous reactions.
- analyze the best kinetic regimes for mass transfer and reaction for a given reaction and
- predict the rate equation.
- predict the rate controlling step for the fluid particle reactions.
- classify catalysts and predict physical properties of catalyst, surface area, void volume, solid density pore volume distribution.
- understand the nature and mechanism of catalytic reactions.

Department of Chemical Engineering

Course Code: SECH4030 Course Name: Petroleum Studies Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Prostical Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total		
Theory	Flattical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand various chemical allied operations related to petroleum industries.
- know the wide field of chemical engineering in petrochemical.

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Basic of Petroleum Role of Crude oil in global economy, Present Scenario of Crude Oil Refinery, Importance, Occurrence, Origin(formation), Exploration, Composition, Classification and Evaluation of Crude oil, Crude Assay Analysis, Distillation Characteristics such as TBP, ASTM& EFV etc.	04	10			
2.	Properties of Crude and Petroleum Products Various types of Average Boiling Points of Crude Oil & Petroleum Fractions, Types of Gases & their Composition,Types of Gasoline & it's Important Properties and tests such as ASTM Distillation, RVP, Octane Number, Oxidation Stability, Sulphur Content etc, Various Types of Naphtha and their Important Properties & Applications. Important Tests & Properties of Kerosene such as Flash& Fire Point,Smoke Point , Aniline Point etc., Types of Diesel & its Important Properties & Tests such as Pour Point, Diesel Index, Cetane Number etc. Heavy Fractions like Lube Oil, Bitumen, Asphalt etc & their Important Properties such as Viscosity Index, Carbon Residue, Penetration Index, Softening Point etc.	06	10			
3.	Processing of Petroleum Pretreatment of Crude (Dehydration & Desalting), Pumping of	04	10			

	Waxy Crude, Heating of Crude, Distillation of Petroleum & Types		
	of Reflux, ADU & VDU, Topping Operations etc.		
4.	Treatment Techniques Physical Impurities found in Crude& their Removal, Sweetening Techniques, Production and Treatment of LPG & their Methods, Dehydration and Sweetening of Gases, Gasoline Treatment such as Lead Doctoring, Merox Sweetening, Catalytic Desulphurization etc. Treatment of kerosene, Various Methods of Treatment of Lubes such as Clay Treatment, Phenol Extraction, Furfural Extraction, Dewaxing etc.	04	10
5.	Thermal & Catalytic Cracking Necessity and Types of Cracking Thermal Cracking Mechanism of Thermal Cracking, Properties of Cracked Materials, Vis Breaking, Dubb's Two Coil Process, Delayed Coking, Naphtha Cracking, etc. Catalytic Cracking Advantage & Theory of Catalytic Cracking, Fixed bed, Moving Bed & Fluidized Bed Technology, FCC, Hydrocracking, Catalytic Reforming, Platforming, Continuous Catalyst Regeneration Reforming, Catalytic Polymerization, Catalytic Alkylation, Catalytic Isomerization, etc.	05	10
	Section II		
Module No.	Section II Content	Hours	Weightage in %
Module No. 1.	Section II Content Petrochemicals and Petro Industries Physical & Chemical Properties, Various Routes of Production, Manufacturing Processes, Flow Sheets, Thermodynamics & Kinetics Consideration & Major Engineering Problems for following Petrochemicals	Hours 05	Weightage in % 10
Module No. 1. 2.	Section II Content Petrochemicals and Petro Industries Physical & Chemical Properties, Various Routes of Production, Manufacturing Processes, Flow Sheets, Thermodynamics & Kinetics Consideration & Major Engineering Problems for following Petrochemicals C1 Petrochemicals Petrochemicals Obtained from Methanol, Formaldehyde, Chloromethane etc.	Hours 05 04	Weightage in % 10 10
Module No. 1. 2. 3.	Section II Content Petrochemicals and Petro Industries Physical & Chemical Properties, Various Routes of Production, Manufacturing Processes, Flow Sheets, Thermodynamics & Kinetics Consideration & Major Engineering Problems for following Petrochemicals C1 Petrochemicals Petrochemicals Obtained from Methanol, Formaldehyde, Chloromethane etc. C2 Petrochemicals Petrochemicals obtained from Ethylene, Ethanolamine, Ethylene Dichloride, Vinyl Chloride, Ethylene Oxide etc.	Hours 05 04 05	Weightage in % 10 10 10
Module No. 1. 2. 3. 4.	Section II Content Petrochemicals and Petro Industries Physical & Chemical Properties, Various Routes of Production, Manufacturing Processes, Flow Sheets, Thermodynamics & Kinetics Consideration & Major Engineering Problems for following Petrochemicals C1 Petrochemicals Petrochemicals Obtained from Methanol, Formaldehyde, Chloromethane etc. C2 Petrochemicals Petrochemicals obtained from Ethylene, Ethanolamine, Ethylene Dichloride, Vinyl Chloride, Ethylene Oxide etc. C3 &Aromatic Petrochemicals Petrochemicals Obtained from Propylene, ACN, Isopropanol, Cunene, BTX Separation, Phenol, Styrene, Phthalic Anhydride etc.	Hours 05 04 05 04	Weightage in % 10 10 10 10

List of Practical:

Sr. No	Name of Practical	Hours
1.	Determination of Aniline point of the given oil sample	02
2.	Determination of the flash & fire point of a given sample of oil by Pensky -	04
	Martin apparatus	
3.	Determination of distillation characteristics of gasoline using A.S.T.M	04
	distillation	
4.	Determination of viscosity of given sample of heavy oil saybolt viscometer	04
5.	Determination of viscosity of given sample of heavy oil redwood viscometer	04
6.	Determination of percentage carbon residue of petroleum product by	04
	conradson carbon residue.	
7.	Determination of softening point of given bituminous material	04
8.	Determination of the flash point of a given sample of oil by Able's apparatus	04

Text Book(s):

Title	Author/s	Publication
Modern Petroleum Refining Processes	B. K. Bhaskar Rao	Oxford and IBH 2007
Dryden's Outlines of Chemical technology,	M Gopal Rao	East-West press Pvt. Ltd, Delhi
3 rd Edition		

Reference Book(s):

Title	Author/s	Publication
Petroleum Refinery Engineering	W. L. Nelson	McGraw Hill, Newyork, 1958.
The Chemistry and technology of Petroleum	Speight, J. G.	5th Edition, M. Dekker, 1991

Web Material Link(s):

• https://nptel.ac.in/courses/103/102/103102022/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- understand fundamentals of petroleum refinery & various petrochemical plants.
- characterize & test various properties of different petroleum fractions.
- understand scenario of refinery & petrochemical industries.
- understand manufacturing processes & applications of widely used petrochemicals.

Department of Chemical Engineering

Course Code: SECH4041

Course Name: Chemical Engineering Plant design, Economics & Industrial Management Prerequisite Course(s): SECH3071 - Chemical Process Technology

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Pr	Drastical Tutorial	Tutorial Credit	Theory Pract		ctical	Tutorial		Total		
	Flattical	cal Iutorial Credit	Creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
02	00	00	02	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objectives of the Course:

To help learners to

- deal with design aspect, selection of equipment, importance of utilities and auxiliaries for any process industries.
- deal with various cost involve in industrial processes, capital investments and investment returns.
- fill the gap between technical knowledge commercial sustainability of any plant by imparting brief description of any plant from top to bottom approach.

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Introduction Basic Considerations in Chemical Engineering Plant Design.	03	05			
	Optimization & Feasibility of Plant Design					
2.	Process Design Aspects Selection of Process-Factors Affecting Process Selection. Types of Project Design, Importance of Laboratory Development Pilot	06	15			
3.	Selection of Process Equipment Standard Versus Special Equipment-Material of Construction for Process Equipment, Selection Criteria, and Specification Sheets	03	05			
4.	Process Auxiliaries and Process Utilities Piping Design, Layout, and Supports for Piping Insulations. Pipe Fittings, Types of Valves, Selection of Valves, Process Control and Instrumentation Control System Design. Process Water, Boiler Feed Water, Water Treatment, Waste Treatment and Disposal, Disposal, Steam, Oil Heating System, Chilling Plant, Compressed Air and Vacuum	06	15			

	Plant location and layout		
5.	Factors Affecting Plant Location, Factors in Planning Layouts,	05	10
	Principles of Plant Layout, Use of Scale Models		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Cost Estimation		
	Cash Flow and Cumulative Cash Position for Industrial		
	Operations, Factors Affecting Estimation of Investment and		
1.	Production Cost, Breakeven Point and Its Significance, Total	05	10
	Capital Investment, Fixed and Working Capital Investment &		
	Their Estimations, Type of Estimates, Cost Indexes, Method for		
	Estimating Capital Investment		
	Estimation of Total Product Cost		
2	Estimation of Total Product Cost: Manufacturing Cost, General	04	10
2.	Expenses, Manufacturing Cost: Direct Production Cost, Fixed	01	10
	Charges, Plant Overhead Cost.		
	Depreciation		
	Types of Depreciation, Method for Determining Depreciation:		
3	Straight Line Method, Decline Balance Method, Sum of the Year	05	10
Э.	Digit Method, Shrinking Fund Method etc, Single Unit and	05	10
	Group Depreciation, Adjustment of Depreciation Account,		
	Evaluation of Depreciation Methods		
	Profitability, Alternative Investments and Replacement		
4	Methods for Profitability Evaluation, Evaluation of Break Even	04	10
4.	Point, % Rate of Return, Practical Factors in Alternative	04	10
	Investment and Replacement Studies.		
	Project Management		
5.	Planning of Project Schedule by BAR CHART, Inventory Control	04	10
	Scheduling a Project using CPM/PERT Methods.		

Text Book(s):

Title	Author/s	Publication	
Plant design and Economics for Chemical Engineers	M.S. Peters and Timmerhaus	McGraw Hill 3rd Edition	
Chemical Engineering Plant Design	F.C. Vibrandt and C.E. Dryden	McGraw Hill 5 th Edition	

Reference Book(s):

Title	Author/s	Publication
Industrial Engineering and Management	O. P. Khanna	Dhanpat Rai & Sons, 1985 7 th Edition

Web Material Link(s):

• https://nptel.ac.in/courses/103103039/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- learn basic economic concept, to understand and apply these concepts in the project works undertaken and to chemical engineering situation by solving problem.
- carry out the primary techno-economic feasibility of project.
- select appropriate process for a project.
- differentiate the equipment and able to prepare specification sheet.
- understand piping and instrumentation diagram.
- evaluate the project cost including capital investment, product cost, breakeven point, depreciation cost for equipment and the total project cost.
- control and schedule of the project using CPME/PERT technique, calculations.
- solve problem on profitability and replacement analysis.

Department of Chemical Engineering

Course Code: SECH4050

Course Name: Modelling, Simulation & CAD in Chemical Engineering Prerequisite Course(s): --

Teaching & Examination Scheme:

-										
Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mai	rks)		
Theory	www. Dreatical Tutorial (starial Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattital	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic principles of process modelling & simulation.
- apply the concepts of modelling and simulation to develop models of chemical engineering systems.

	Section I		
Module	Content	Hours	Weightage
No.	content	nours	in %
	Process Analysis and its Basic Principles		
1.	Description of Systems, Subsystems, Scientific Methods,	06	10
	System Parameters, Process Analysis and Simulation		
2.	Introduction to Simulation Tools	04	8
	Mathematical Models and their Classification		
2	Models Based on Transport Phenomena Principles, Alternate	10	17
э.	Classification of Models, Population Balance, Stochastic, and	10	17
	Empirical Models, Unit Models		
	Models of Heat Transfer Equipment		
4	Development of Detailed Mathematical Models of	10	15
т.	Evaporators, Use of Newton Raphson Method for Solving	10	15
	Evaporator Problems		
	Section II		
Module	Content	Hours	Weightage
No.	Content	nours	in %
1	Models of Separation Processes		
	Separation of Multi-Components Mixtures by Use of a Single	20	25
1.	Equilibrium Stage, Flash Calculation Under Isothermal and	20	25
	Adiabatic Conditions. Tridiagonal Formulation of Component		

	Material Balances and Equilibrium Relationships for		
	Distillation, Absorption and Extraction of Multi-Components.		
	Thiele and Geddes Method, Plus θ -method and k_b method,		
	models of Absorbers, Strippers and Extractors		
	Models of Reactors		
2	Classification of Fixed Bed Reactor Models, One Dimensional	10	25
Ζ.	and Two-Dimensional Fixed Bed Reactor Models, Fluidized	10	25
	Bed Reactor Models, Bioreactor Models		

List of Practical:

Sr. No	Name of Practical	Hours
1.	Introduction to ASPEN Plus	02
2.	Thermodynamic model in ASPEN Plus	04
3.	Steady State simulation in ASPEN Plus	02
4.	Rigorous modelling Example-01	02
5.	Rigorous modelling Example-02	04
6.	Rigorous modelling Example-03	04
7.	Rigorous modelling Example-04	02
8.	Reactor Modelling Example -01	02
9.	Reactor Modelling Example -02	04
10.	Reactor Modelling Example -03	04

Text Book(s):

Title	Author/s	Publication		
Process Plant Simulation	B. V. Babu	Oxford University Press		

Reference Book(s):

Title	Author/s	Publication		
Numerical methods for angineers	S K Cupta	New Age International		
Numerical methods for engineers	S. K. Gupta	Publishers Ltd., (1995)		
Applied Mathematics and	P C Pice D D Do	John Wilow & Song (100E)		
modelling for Chemical Engineers	R. G. RICE, D. D. D0	John Whey & 30hs (1993)		
Transport Phonomona	R. B. Bird, W. E. Stewart, E. N.	John Wilow & Song (2002)		
	Lightfoot			

Web Material Link(s):

- https://nptel.ac.in/courses/103/107/103107096/
- <u>https://lecturenotes.in/notes/17696-note-for-simulation-and-modelling-sm-by-bohar-singh</u>
- <u>https://nptel.ac.in/courses/112107214/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- learn basic definitions and fundamental principles related to process modelling and simulation.
- understand different types of models and their hierarchy as well as the general steps followed in developing a process model.
- develop appropriate mathematical models of varying complexities for different chemical engineering systems.
- know and learn about the commonly available mathematical tools and techniques as used in the simulation of developed models.

Department of Chemical Engineering

Course Code: SECH4062 Course Name: Transport Phenomena Prerequisite Course(s): SECH3010- Heat Transfer Operations SECH2050- Fluid Flow Operations

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Ma	rks)		
Theory Dreatical Tytorial		d Cradit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	FIALILAI	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
04	00	01	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn momentum, Heat and Mass Transfer are three basic transport processes in chemical engineering.
- understand mathematical modeling and analogical aspects of chemical process systems where these transport processes occur simultaneously.
- understand transport Phenomena also focuses on typical situations and thereby its complete understanding on axial as well as radial profiles.

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Analogies in Momentum, Heat and Mass Transfer Introduction, Reynolds Analogy, Prandtl Taylor Analogy, Van	08	15			
	Karman Analogy, Martinelli Analogy, Chilton Analogy					
2.	Principles of Momentum & Overall Balances Newtonian and Non-Newtonian Fluid Models, Classification of Fluids on the Basis of Rheology, General Molecular Transport Equation for Momentum Transfer, Review of Shell Balance Method and Equations of Changes for Fluid Flow Problems, Time Derivatives	12	20			
3.	Equations of Changes for Isothermal, Non-Isothermal, and Multi Component Mixtures. Velocity, Temperature, and Concentration Distributions with more than one Independent Variable; Boundary Layer Theory	10	15			

Section II						
Module No.	Content	Hours	Weightage in %			
	Turbulent transport					
1.	Laminar-turbulent transition; Basic characteristic features of turbulent flow; Time smoothed equation of changes; Eddy viscosity, thermal conductivity and diffusivity; Distribution of velocity, temperature, and concentration in turbulent flows.	08	10			
2.	Principles of Heat Transfer Application of Shell balance and Equations of changes for temperature distributions in heat flow problems Heat conduction with various heat sources, Heat conduction with cooling fins, Temperature distribution for fully developed viscous flow, Heat transfer for non-Newtonian fluids, Unsteady state heat transfer in various geometries, Partial freezing model, Chilling & Freezing of biological materials, Heat transfer with phase change.	10	20			
3.	Principles of Mass Transfer Application of Shell balance method and Equations of changes for mass transfer problems, Diffusivity, mass and molar transport by convection, Concentration distributions for isothermal and non-isothermal mixtures, Multi component systems with more than one independent variable and in turbulent flow convective mass transfer and correlation, inter phase mass transfer, Diffusion with chemical reaction, Transport across selectively permeable membrane and porous media.	12	20 0			

Text Book(s):

Title	Author/s	Publication
Transport Phenomena	Bird R.B., Stewart W.E., Lightfoot	John Wiley & Sons, 2002.
	E. N.	
Fundamentals of Momentum,	Welty, J.R., Wicks, C.W., Wilson,	John Wiley & Sons.
Heat and Mass transfer	R.E. and Rorrer, G.	

Reference Book(s):

Title	Author/s	Publication
Momentum Heat and Mass Transfer in Cintiniua.	Slattery J.C.	McGraw-Hill
Advanced Transport Phenomena.	Slattery J.C.	Cambridge University Press

Web Material Link(s):

- <u>https://nptel.ac.in/courses/103/106/103106159/</u>
- <u>https://nptel.ac.in/courses/103/102/103102024/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Submission of Power point presentation which is to be presented by the students in a group of 3 which carries 10 marks of evaluation.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorials which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- setup overall balances for conservation of momentum, energy and mass.
- recognize and apply analogies among momentum, heat and mass transfer.
- reduce and solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration.
- utilize information obtained from solutions of the balance equations to obtain engineering quantities of interest.
- reduce and solve appropriate macroscopic balances for conservation of momentum, energy and mass.

Department of Chemical Engineering

Course Code: SECH4070 Course Name: Process Integration & Process Optimization Prerequisite Course(s): --

Teaching & Examination Scheme:

_										
Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mai	rks)		
Theory	Practical	reatical Tytorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	Total
04	02	00	05	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the fundamental principles and practical methodologies of process integration;
- impart background knowledge for employment in the process industries as well as for post graduate studies and research;
- formulate simple optimization problem, writing objective functions, equality and inequality constraints and bounds;
- understand simple constrained and unconstrained optimization problem, formulate and solve simple linear programming problems, non-linear programming problems and appreciate the application of optimization in chemical process engineering.

Section I					
Module No.	Content	Hours	Weightage in %		
1.	Introduction to process integration Role of thermodynamics in process integration, Concept of pinch technology and its application	04	8		
2.	Heat Exchange Networks HENS, Composite curves, Problem table algorithm, Targeting of energy, area, number of units, shell and cost.	09	17		
3.	Network Integration Super targeting, Continuous targeting, Maximum energy recovery (MER), Network for multiple utilities and multiple pinches, Grand composite curve (GCC).	09	16		
4.	Mass Exchange Network Synthesis Waste water targeting and system design.	08	09		

	Section II				
Module No.	Content	Hours	Weightage in %		
1.	Introduction Basic Concepts of Optimization, Objective function, Model fitting, Regression analysis.	06	08		
2.	Unconstrained Optimization Single Variable Optimization: one-dimensional search techniques, Multivariable optimization: direct & indirect methods of first and second order, Simplez method, Newton's method.	10	18		
3.	Constrained Optimization Linear Programming (LP) and application: Graphical solution for solving LP problem, simplex method, duality in LP. Non- Linear Programming (NLP) and application: the Langrange multiplier methods, quadratic programming.	08	15		
4.	Applications of Optimization	06	09		

List of Practical:

Sr. No	Name of Practical	Hours
1.	Plotting Composite Curve in Excel	02
2.	Tutorial on Pinch Technology	04
3.	Plotting Grand Composite Curve in Excel	04
4.	Area Targeting in Excel	08
5.	Mass exchange network diagram in Excel	02
6.	Tutorial from module -01	02
7.	Practical on multivariable optimization in Excel	02
8.	Practical on Linear Programming	02
9.	Practical on Non- Linear Programming	02
10.	Tutorial on Lagrange Multiplier Methods	02

Text Book(s):

Title	Author/s	Publication		
Pinch Analysis and Process Integration: A user guide on process integration for the efficient uses of energy (2 nd edition)	Ian C. Kemp	Butterworth- Heinemann (2007)		
Optimization of Chemical Processes (2 nd edition)	Thomas F. Edgar, David M. Himmelblau and L. S. Lasdon	McGraw Hill (2005)		

Reference Book(s):

Title	Author/s	Publication	
Chemical Process Design & Integration	Dohin Smith	Wiley Publishing	
(2 nd edition)		House	
Systematic Methods of Chemical Process	Beigler L. T., Grossman I.	Prentice Hall	
Design (1 st Edition)	E., Westerberg A. W.		

Web Material Link(s):

- https://nptel.ac.in/courses/103/107/103107094/
- <u>https://simplicable.com/new/process-integration</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration and the average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- understand the concept of pinch in mass and energy exchange network and be able to calculate the targets.
- apply process integration techniques in various heat and mass transfer processes.
- classify process models and formulate verbal optimization problem into a mathematical expression in the form of objective function and identify constraints and bounds.
- use commercial optimization problem solvers and will be able to apply principles of optimization in chemical engineering process design/operation improvement.

Center for Skill Enhancement and Professional Development

Course Code: SEPD4010 Course Name: Creativity, Problem Solving & Innovation Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	me (Ma	rks)		
Theory	any Drastical Tytorial C		Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	FIACULAI	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	100	00	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- achieve expertise with the technicalities of creativity and problem solving.
- advance an assertiveness for innovation.
- advance creative thinking skills using shaft of learning components leading to understanding of plans of creativity, problem solving and innovation
- discuss uses of the concepts of creativity and problem-solving skills in personal, social, academic, and profession life.

	Section I						
Module	Contont	Hours	Weightage				
No.	content	nours	in %				
	Introduction to Creativity, Problem Solving and Innovation						
	Definitions of Problem Solving, Creativity and Innovation						
	• Need for Problem Solving and Innovation & Scope of						
1.	Creativity	08	17				
	Types and Styles of Thinking						
	• Strategies to Develop Creativity, Problem Solving and						
	Innovation Skills						
	Questioning and Learning						
	• Introduction to Questioning, Learning and Visualization and						
2	its Strategies	07	10				
Ζ.	Sources and Methods of Questioning and Learning	07	16				
	Finding Perspective, Visualizing thinking						
	Mind Mapping						
	Creative Thinking and Problem Solving						
	Need of Creative Thinking	00	17				
3.	• Cracking Creativity - Reversals, Reversing Perspective,	Uδ	1/				
	seeing all sides, Looking in other world,						

	• Finding what you are not looking for and following up		
	Fishbone Diagram		
	SCAMPER Technique		
	Section II	1	l
Module No.	Content	Hours	Weightage in %
	Logic and Reasoning		
	Basic Concept of Logic		
	• Divergent Vs Convergent Thinking, Inductive Vs Deductive		
1.	Thinking	08	17
	Fusion of Ideas for Problem Solving		
	Moral Reasoning		
	Improvisation		
	Practices of Playing		
	Collaboration and Brainstorming		
2	The Spirit of Koinonia	07	10
Ζ.	• QFT Model	07	10
	Connecting the Unconnected		
	Making Novel Combinations		
	Review Strategies for Creative problem-solving methods		
	A Heuristic Technique		
	Problem-Solving Strategies: Why Bother?		
2	• Five Building Blocks as per Fogler & LeBlanc	07	17
э.	Strategy for Critical Thinking for Choosing	07	1/
	Lateral Thinking		
	Six Thinking Hats by Edward De Bono		
	Design Thinking		

Text Book(s):

Title	Author/s	Publication		
Thinker Toys	Michael Michalko	Random House Publication 2006		
Crackling Creativity, The Secrets	Michael Michalko	Ton Spood Proce 2001		
of Creative Genus	MICHAEL MICHAIKO	Ten Speed Press 2001		

Reference Book(s):

Title	Author/s	Publication
Zig Zag, The Surprising Path to	D Koith Sawwor	Josey Bass Publication 2012
Greater Creativity	K Keltil Sawyei	Jossy-Dass Fublication 2013
De Bono's Thinking Course	Edward De Bono	Penguin Publication 1994
Six Thinking Hats	Edward De Bono	Penguin Publication 1999
How to Mind Map	Tony Buzan	Thorsons Publication 2002
The Myths of Innovation	Scott Berkum	Berkun Publication 2010
Creative confidence: Unleashing	Tom Kelly and David	William Collins Publication
the creative Potential within Us all	Kelly	2013
The all Laughed	Ira Flatow	Harper Publication 1992

The Ultimate Lateral & Critical	Paul Sloane, Des	Sterling Publication 2002
Thinking Puzzle book	MacHale & M.A. DiSpezio	

Course Evaluation:

Section	Module No.	Evaluation Criteria	Marks	
	1	Group Activity on Brainstorming	15	
1	2	Mind Mapping Activity	10	
	3	Chart Preparation on 'Practicality of Fishbone Diagram'	15	
		Group presentation on 'SCAMPER Technique & its applications'	10	
	1	Group Presentation on Critical Analysis of a Govt. scheme/	15	
	I	policy/ budget (merit/ demerit, pros/cons etc)		
2	2	Group Discussion/ Debate/ Elocution	10	
	Problem Solving Activity (Individual)		10	
	3	Presentation (Learning Outcomes)	15	
		Grand Total	100	

Course Outcome(s):

- establish creativity in their day to day actions and educational output.
- solve all types of problems with an optimistic and an impartial attitude.
- reflect innovatively and work towards problem solving in a tactical way.
- initiate different and advanced practices in their selected field of profession.

Department of Chemical Engineering

Course Code: SECH4510 Course Name: Chemical System Modelling Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours /Week) Examination Scheme (Marks)	
Theory Practical Tutorial Credit Theory Practical Tutorial	Total
CE ESE CE ESE CE ESE	TOLAI
03 00 00 03 40 60 00 00 00 00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- give an overview of various methods of process modeling, different computational techniques for simulation.
- focus on the techniques, rather than specific applications so that the student can take up modeling and simulation challenges in his profession.

Section I							
Module	Content	Hours	Weightage				
No.	Goment	mours	in %				
1.	Introduction to Process Modeling Systematic Approach to Model Building, Classification of Models. Conservation Principles, Thermodynamic Principles of Process Systems	05	10				
2.	Models based on First Principle Development of Steady State and Dynamic Lumped and Distributed Parameter Models Based on First Principles. Analysis of Ill-conditioned Systems. Models with Stiff Differential Equations.	08	20				
3.	Development of Grey Box Models Empirical model building. Statistical model calibration and validation. Examples. Introduction to population balance models, multi-scale modeling.	09	20				
Section II							
Module No.	Content	Hours	Weightage in %				
1.	Solution Strategies for Lumped Parameter Models and StiffDifferential EquationsSolution Methods for Initial Value and Boundary Value	10	20				

	Problems. Euler's Method. R-k Methods, Shooting Method, Finite		
	Difference Methods – Predictor Corrector Methods.		
2.	Solution Strategies for Distributed Parameter Models Solving parabolic, elliptic and hyperbolic partial differential equations. Introduction to finite element and finite volume methods.	10	20
3.	Solving Problems using MATLAB	03	10

Text Book(s):

Title	Author/s	Publication
Process Modeling, Simulation and Control	WI Luwbon	McGraw Hill Book Co., New York
for Chemical Engineers (2nd edition)	vv.L. Luyben	(1990)

Reference Book(s):

Title	Author/s	Publication	
Mathematical Methods in Chemical Engineering	Jensen V.G.,	Academic Press,	
(2nd edition)	Jeffrey's G.V.	London (1978)	
Computational Methods for Process Simulation	W E Dominoz	Duttomuontha (1007)	
(2nd edition)	W. F. Kallillez	Butter worths (1997)	
Chemical Process Modelling and Computer	Amius K Jana	Prentice Hall of India	
Simulation (2nd edition)	Alliya K. Jalla	(2011)	
Applied Numerical Analysis using MATLAB (2nd	Laurono V. Faucott	Deemacr (2000)	
edition)	Laurene v. rausett	real soli (2009)	

Web Material Link(s):

- <u>https://nptel.ac.in/courses/103101142/</u>
- <u>https://lecturenotes.in/subject/383/simulation-and-modelling-sm</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration and the average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- develop process models based on conservation principles and process data;
- understand computational techniques to solve process models;
- use simulation tools.

Department of Chemical Engineering

Course Code: SECH4520

Course Name: Quality Control and Quality Assurance – Instrumentation and Validation Process Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)		Examination Scheme (Marks)								
Theory Practical Tutorial	Cradit	The	eory	Prac	ctical	Tute	orial	Total		
Theory	heory Practical Intorial Credit	creuit	CE	ESE	CE	ESE	CE	ESE	TUtal	
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the importance of quality
- learn about ISO management systems
- know the tools for quality improvement
- analyze the issues in quality
- learn the importance of quality evaluation of pharmaceuticals
- understand the concept of stability testing of drug and drug substances
- practice statistical approaches for quality

Module No.	Content	Hours	Weightage in %
1.	Introduction Concept and evolution and Scopes of Quality Control and Quality Assurance, Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Q series guidelines. Good Laboratory Practices: Scope of GLP, Definitions, Quality Assurance Unit, Protocol for Conduct of Non-Clinical Testing, Control on Animal House, Report Preparation and Documentation. CPCSEA Guidelines	07	14
2.	Inspection Convention cGMP Guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention(PIC), WHO and EMEA Covering: Organization and Personnel Responsibilities, Training, Hygiene and Personal Records, Drug Industry Location, Design, Construction and Plant Lay Out, Maintenance, Sanitation, Environmental Control, Utilities	07	18

	and Maintenance of Sterile Areas, Control of Contamination		
	and Good Warehousing Practice.		
3.	Quality Control Analysis of Raw Materials, Finished Products, Packaging Materials, In Process Quality Control (IPQC), Developing Specification (Ich Q6 And Q3), Purchase Specifications and Maintenance of Stores for Raw Materials. In Process Quality Control and Finished Products Quality Control for Following Dosage Forms in Pharma Industry according to Indian, US and British Pharmacopoeias: Tablets, Capsules, Ointments, Suppositories, Creams, Parenterals, Ophthalmic and Surgical Products (How to Refer Pharma Copoeias).	08	18
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Documentation Documentation in Pharmaceutical Industry: Three tier documentation, Policy, Procedures and Work Instructions, and Records (Formats), Basic Principles- How to Maintain, Retention and Retrieval etc. Standard Operating Procedures (How to write), Master Batch Record, Batch Manufacturing Record, Quality Audit Plan and Reports. Specification and Test Procedures, Protocols and Reports. Distribution Records. Electronic Data Handling. Concepts of Controlled and Uncontrolled Documents. Submission documents for regulators DMFs, as Common Technical Document an Electronic Common Technical Documentation (CTD, eCTD). Concept of regulated and non regulated markets.	12	25
2.	Manufacturing Operations and Controls Sanitation of Manufacturing Premises, Mix-Ups and Cross Contamination, Processing of Intermediates and Bulk Products, Packaging Operations, IPQC, Release of Finished Product, Process Deviations, Charge-In of Components, Time Limitations on Production, Drug Product Inspection, Expiry Date Calculation, Calculation of Yields, Production Record Review, Change Control, Sterile Products, Aseptic Process Control, Packaging, Reprocessing, Salvaging, Handling of Waste and Scrap Disposal. Introduction, Scope and Importance of Intellectual Property Rights. Concept of Trade Mark, Copyright and Patents.	11	25

Text Book(s):

Title	Author/s	Publication
Quality Assurance Guide by organization of	D U Shah	3 rd revised edition, Volume I
Pharmaceutical Procedures of India	D IT SHAH	& II, Mumbai, 1996.
How to Practice GMP's	P P Sharma,	Vandana Publications, Agra, 1991.

Reference Book(s):

Title	Author/s	Publication
Quality Assurance of Pharmaceuticals- A		WHO Publications,
compendium of Guide lines and Related materials		1999
Vol I & II, 2nd edition		
Good laboratory Practice Regulations –, Volume 38,	Allen F. Hirsch	Marcel Dekker Series,
		1989

Web Material Link(s):

• <u>www.pharmaguide.com</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- define importance of quality.
- give information about ISO management systems.
- exhibit tools for quality improvement.
- analyze issues in quality.
- do quality evaluation of pharmaceuticals.

Department of Chemical Engineering

Course Code: SECH4530 Course Name: Membrane Technology Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)		eek)	Examination Scheme (Marks)				rks)		
Theory	Dractical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattical	TULUTIAI	Creuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- enable to understand membrane-based separation problems by acquiring in-depth knowledge in the area of membrane separation mechanisms, transport models, membrane materials and modules.
- focus particularly on various applications of membrane science and technology.

	Section I					
Module	Contont	Houma	Weightage			
No.	content	nours	in %			
	Rate Governed and Equilibrium Membrane Separation					
	Processes					
1	Fundamentals, Types of Membranes, Modules, Flow Patterns,	06	15			
1.	Preparation and Characterization of Membranes, Melt Pressing,	00	15			
	Film Stretching, Sol-gel Peptization, Interfacial Polymerization					
	etc. Measurement of Pore Size and Solute Rejection Properties					
	Reverse Osmosis					
	Design and Operating Parameters, Various Transport Models,					
2.	Kedem-katchalsky Model, Spiegler-kedem Model, Solution-	06	15			
	diffusion Model, Concentration Polarization and Flux Decline,					
	Design of an RO module, Forward Osmosis					
	Nanofiltration					
2	Transport Mechanism in NF Membranes, Parameters affecting	06	10			
э.	the Performance of NF Membranes, Fouling Model,	00	10			
	Determination of Various Resistances					
	Ultrafiltration					
	Factors Affecting Performance of Ultrafiltration, Resistance					
4.	Model, Gel Polarization Model, Fouling and Flux Decline,	05	10			
	Micellar-Enhanced Ultrafiltration, Affinity Ultrafiltration,					
	Microfiltration Advances					

	Section II					
Module	Contont	Hours	Weightage			
No.	content	nours	in %			
	Membrane Gas Separation					
	Membranes for Gas Separation, Fundamental Mechanism of Gas					
	Transport, Knudsen Diffusion, Molecular Sieving, Solution					
1.	Diffusion, Dual Sorption Model, Factors Affecting Gas	07	20			
	Permeation, Complete Mixing Model, Solution of Equations,					
	Equations for Multicomponent Mixtures, Cross - Flow Model,					
	Countercurrent Model, Applications					
	Pervaporation					
2.	Mass Transfer and Thermodynamics Aspects of Pervaporation,	05	10			
	Temperature Drop at Membrane Interface					
	Dialysis					
	Principle of Dialysis, Dialysis Systems, Mass Transfer in Dialysis,					
3.	Modeling of Solute Transport in Hemodialyzer, Advantages of	06	10			
	Diffusion Dialysis, Application of Diffusion Dialysis,					
	Electrodialysis					
4	Membrane Reactor	04	10			
т.	Membrane Bioreactor, Membrane Distillation	04	10			

Text Book(s):

Title	Author/s	Publication
Membrane technology and applications	Baker, R.W.	2nd ed., John Wiley 2004
Membrane separation Processes	K Nath	Prentice Hall of India, New Delhi

Reference Book(s):

Title	Author/s	Publication
Basic Principles of Membrane Separation	Mudler J	(2nd Edition), Springer

Web Material Link(s):

https://nptel.ac.in/courses/103105121/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Submission of power point presentation which is to be presented by the students in a group of 3 which carries 10 marks of evaluation.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- apply various transport models for the calculation of membrane fluxes and the extent of separation for various membrane systems.
- identify the types of experimental data needed for the calculation of membrane parameters
- select a membrane process and design components to carry out a specific separation
- apply advanced membrane techniques to solve environmental as well as chemical industries problems.
- review the importance and relevance of separation process with the help of membrane in industry.

Department of Chemical Engineering

Course Code: SECH4540 Course Name: Industrial Health & Safety Engineering Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Scher	ne (Mai	rks)		
Theory	Dractical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattital	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOLAT
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide knowledge on design features for a process industry and safety in the operation of various equipment in industry.
- understand the various hazards and prevention in commissioning stage of industry.
- recognize and identify the safe operation of equipment in process industry.
- plan and trained for emergency planning in a process industry.
- get fundamental knowledge on safe storage of chemicals.
- understand mathematical modeling and analogical aspects of chemical process systems where these transport processes occur simultaneously.
- transport Phenomena also focuses on typical situations and thereby its complete understanding on axial as well as radial profiles.

	Section I				
Module	Contant	Hours	Weightage		
No.	content	nours	in %		
	Hazard, Risk Issues, and Hazard Assessment				
1.	Introduction, Hazard assessment, Hazard operability studies	03	05		
	(HAZOP, HAZAN), Fire triangle, OSHA standards				
2.	Safety in Process Design Design Process, Conceptual Design and Detail Design, Assessment, Inherently Safer Design Chemical Reactor, Types, Batch Reactors, Reaction Hazard Evaluation, Assessment, Reactor Safety, Operating Conditions, Unit Operations and	05	08		
	Safety in Pressure System Design				
3.	Pressure System, Pressure Vessel Design, Standards and Codes- Pipe Works and Valves - Heat Exchangers - Process Machinery-	06	17		

	Over Pressure Protection, Pressure Relief Devices and Design,		
	Fire Relief, Vacuum and Thermal Relief, Special Situations,		
	Disposal- Flare and Vent Systems Failures In Pressure System.		
	Plant Commissioning		
	Commissioning Phases and Organization, Pre-Commissioning		10
4.	Documents, Process Commissioning, Commissioning Problems,	04	10
	Post Commissioning Documentation		
	Plant Inspection		
	Plant Inspection, Pressure Vessel, Pressure Piping System, Non-		
_	Destructive Testing, Pressure Testing, Leak Testing and	05	10
5.	Monitoring - Plant Monitoring, Performance Monitoring,	05	10
	Condition, Vibration, Corrosion, Acoustic Emission-Pipe Line		
	Inspection		
	Section II		
Module			Weightage
No.	Content	Hours	in %
	Plant Maintenance, Modification and Emergency Planning		
	Management of Maintenance, Hazards - Preparation for		
	Maintenance, Isolation, Purging, Cleaning, Confined Spaces,		
1.	Permit System - Maintenance Equipment - Hot Works - Tank	07	10
	Cleaning, Repair and Demolition - Online Repairs - Maintenance		
	of Protective Devices - Modification of Plant, Problem-Controls		
	of Modifications.		
	Storages and Transportation		
	General consideration, petroleum product storages, storage		
	tanks and vessel- storages layout segregation, separating		
	distance. LPG storages, pressure storages, layout,		
2	instrumentation, vaporizers, refrigerated storages - LNG	07	20
Ζ.	Storages, Hydrogen Storages, Toxic Storages, Chlorine Storages,	07	20
	Ammonia Storages. Chemical Storages- Underground Storages-		
	Loading and Unloading Facilities- Drum and Cylinder Storage-		
	ware House, Storage Hazard Assessment of LPG and LNG		
	Hazards during Transportation – Pipeline Transport.		
	Plant Operations		
	Application of Shell Balance Method and Equations of		
	Changes for Mass Transfer Problems, Diffusivity, Mass and		
	Molar Transport By Convection, Concentration Distributions		
2	for Isothermal and Non-Isothermal Mixtures, Multi-component	00	20
5.	Systems with more than one Independent Variable and in	08	20
	Turbulent Flow Convective Mass Transfer and Correlation,		
	Inter Phase Mass Transfer, Diffusion with Chemical Reaction,		
	Transport Across Selectively Permeable Membrane and Porous		
	Media		

Text Book(s):

Title	Author/s	Publication		
Safety and Accident Prevention in	Fawcett H.h. and Wood	Wiley inters Second Edition		
Chemical Operations.	Fawcett, II.II. and Wood	Whey inters, second Edition.		
High Risk Safety Technology.	Green, A.E.	John Wiley & Sons.		

Reference Book(s):

Title	Author/s	Publication
Loss Prevention in Process Industries.	Lees, F. P	Butterworths and Company
Guidelines for Chemical Process Quantitative		AICHE, 2000
Risk Analysis		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- become familiar of safe design of equipment which are the essential to chemical industry and leads to design of entire process industries.
- be able to understand the design of pressure systems.
- understand the problems and find innovative solutions while industries facing problems in commissioning and maintenance stages.
- be able to prepare the emergency planning for chemical industry problems.
- be would be able to create safe storage systems.